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Abstract. Microscopic structure models based on the relativistic mean-field approximation have been ex-
tended to include effective Lagrangians with explicit density-dependent meson-nucleon couplings. In a
number of recent studies it has been shown that this class of global effective interactions provides an
improved description of asymmetric nuclear matter, neutron matter and finite nuclei far from stability.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.60.-n Nuclear-structure models
and methods – 21.60.Jz Hartree-Fock and random-phase approximations

The self-consistent mean-field framework enables a de-
scription of the nuclear many-body problem in terms of
universal energy density functionals. By employing global
effective interactions, adjusted to empirical properties of
symmetric and asymmetric nuclear matter, and to bulk
properties of few spherical nuclei, self-consistent mean-
field models have achieved a high level of accuracy in
the description of ground states and properties of excited
states in arbitrarily heavy nuclei. A universal energy den-
sity functional theory should provide a basis for a con-
sistent microscopic treatment of infinite nuclear and neu-
tron matter, ground-state properties of all bound nuclei,
low-energy excited states, small-amplitude vibrations, and
reliable extrapolations toward the drip lines.

An important class of self-consistent mean-field models
belongs to the framework of relativistic mean-field theory
(RMF). The RMF framework has recently been extended
to include effective Lagrangians with density-dependent
meson-nucleon vertex functions. The functional form of
the meson-nucleon vertices can be deduced either by map-
ping the nuclear matter Dirac-Brueckner nucleon self en-
ergies in the local density approximation, or a phenomeno-
logical approach can be adopted, with the density depen-
dence for the σ-, ω- and ρ-meson–nucleon couplings ad-
justed to properties of nuclear matter and a set of spher-
ical nuclei.

We have recently adjusted two new phenomenological
density-dependent interactions to be used in RMF+BCS,
relativistic Hartree-Bogoliubov (RHB), and quasiparticle
random phase approximation (RQRPA) calculations of
ground states and excitations of spherical and deformed
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nuclei. The eight independent parameters: seven coupling
parameters and the mass of the σ-meson, have been ad-
justed to reproduce the properties of symmetric and asym-
metric nuclear matter, binding energies, charge radii and
neutron radii of spherical nuclei. In ref. [1] we introduced
the density-dependent meson-exchange effective interac-
tion (DD-ME1). It has been shown that, as compared to
standard non-linear relativistic mean-field effective forces,
the interaction DD-ME1 has better isovector properties
and therefore provides an improved description of asym-
metric nuclear matter, neutron matter and nuclei far from
stability. The DD-ME1 interaction has recently been also
tested in the calculation of deformed nuclei [2].

In refs. [3,4] we employed the RQRPA in a series of
calculations of giant resonances in spherical nuclei. Start-
ing from DD-ME1, and by constructing families of in-
teractions with some given characteristic (compressibil-
ity, symmetry energy, effective mass), it has been shown
how the comparison of the RQRPA results on multipole
giant resonances with experimental data can be used to
constrain the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective
interactions. In particular, in ref. [4] we have shown that
the comparison of the calculated excitation energies with
the experimental data on the giant monopole resonances
(GMR) restricts the nuclear matter compression modu-
lus to Knm ≈ 250–270 MeV. The isovector giant dipole
resonance (IVGDR) in 208Pb, and the available data on
differences between neutron and proton radii, limit the
range of the nuclear matter symmetry energy at satura-
tion (volume asymmetry) of these effective interactions to
32 MeV ≤ a4 ≤ 36 MeV. The interaction DD-ME1 has
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Fig. 1. Absolute deviations of the binding energies calculated
with the DD-ME2 interaction from the experimental values [5].
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Fig. 2. The binding energies [5], charge isotope shifts [6], and
quadrupole deformation parameters [7] of the Dy, Er and Yb
isotopes, compared with predictions of the RHB model with
the DD-ME2 plus Gogny D1S interactions.

also been employed in the proton-neutron RQRPA analy-
sis of charge-exchange modes: isobaric analog resonances
and Gamow-Teller resonances in spherical nuclei [8].

Taking into account these results, a new global effec-
tive interaction DD-ME2 has been tested in ref. [9]. Simi-
lar to the case of DD-ME1, the parameters have been ad-
justed to a set of twelve spherical nuclei. For DD-ME2, in
addition, data on excitation energies of isoscalar GMR and
IVGDR have been used. The interaction has been adjusted
to the excitation energies of the ISGMR and IVGDR in
208Pb, which practically do not display any fragmenta-
tion. The calculated centroid energy of 12.1 MeV for the
isoscalar giant quadrupole resonance in 208Pb, compared
to the empirical excitation energy 10.9 ± 0.3 MeV [10],
reflects the rather low effective nucleon mass. DD-ME1
and DD-ME2 display very similar equations of state for
symmetric nuclear matter, the symmetry energies as func-
tion of the nucleon density, and the neutron matter equa-
tions of state. In general, when compared with the re-
sults obtained with DD-ME1 [1,2,3], DD-ME2 improves
the agreement with experimental data on ground-state
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Fig. 3. The isovector dipole strength distributions in
116,118,120,124Sn. The experimental excitation energies for the
Sn isotopes are compared with the RHB+RQRPA results cal-
culated with the DD-ME2 effective interaction.

properties of spherical and deformed nuclei, and excita-
tion energies of giant resonances in spherical nuclei. In
the following figures we present several illustrative results
obtained with the DD-ME2 effective interaction. The the-
oretical binding energies of approximately 200 nuclei cal-
culated in the RHB model with the DD-ME2 plus Gogny
D1S interactions, are compared with experimental values
in fig. 1. The rms error including all the masses shown in
the figure is less than 900 keV. The predictions for the
total binding energies, charge isotope shifts, and ground-
state quadrupole deformation parameters of three rare-
earth isotopic chains Dy, Er and Yb, are shown in com-
parison with experimental results in fig. 2. Finally, in fig. 3
we compare the RQRPA results for the isovector dipole re-
sponse of Sn isotopes with experimental data on IVGDR
excitation energies [11].
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